RATE CONSTANTS AND SOLVENT ISOTOPE EFFECTS IN THE CLEAVAGE OF PICOLYL- AND (QUINOLYLMETHYL)TRIMETHYLSILANES BY SODIUM METHOXIDE IN METHANOL *

GIANCARLO SECONI,
Laboialonio deı compostı del car bonto contenentı eteroatomı e loro applicazioni $C N R$ Ita Tolara di Sotto 89 1006 \ddagger Ozzano Emilta (Bolosna) (Itals)

COLIN EABORN,
School of Molecular Scıences L'nuersit, of Sussex, Buıhton B.\19QJ (Great Britain)
and ALFRED FISCHER
Department of Chemistry Unuersity of Victor a Victoria, B C VSW 2 Y2 (Canada)
(Recered March 12 th, 1979)

Summay

Rate constants have been determined for cleavages of picolyltrimethylslanes ($\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$) and (qumolylmethyl)trimethylsilanes ($\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$) by sodium methoxide in $100 \% \mathrm{MeOH}$ (at $25^{\circ} \mathrm{C}$) and sodium hydroxide in $2 / 1 \mathrm{v} / \mathrm{v}$ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (at $50^{\circ} \mathrm{C}$), and used to derive σ^{-}constants for the PyCH_{2} and QnCH_{2} systems (2- $\mathrm{PyCH}_{2}, 085,3-\mathrm{PyCH}_{2}, 053,4-\mathrm{PyCH}_{2}, 107,2-\mathrm{QnCH}_{2}, 114$, $3-\mathrm{QnCH}_{2}, 070,4-\mathrm{QnCH}_{2}, 120$) and approximate $\mathrm{p} K_{\mathrm{a}}$ values for the corresponding carbon acıds PyCH_{3} and $\mathrm{QnCH}_{3}\left(2-\mathrm{PyCH}_{3}, 295 ; 3-\mathrm{PyCH}_{3}, 335\right.$, $4-\mathrm{PyCH}_{2}, 26,2-\mathrm{QnCH}_{3}, 255,3-\mathrm{QnCH}_{3}, 315,4-\mathrm{QnCH}_{3}, 245$) Values of the solvent rate isotope effect, the ratio of the rate constant in MeOH to that in $\mathrm{MeOD}\left(2-, 3-\right.$, and $4-\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}, 0.65,0.49$, and 054 , respectively, $2-3-$, and $4-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}, 056,047$, and 052 , respectively) and of the product isotope effect, the product ratio $\mathrm{RH} / \mathrm{RD}$ on cleavage of RSiMe_{3} in $1 / 1 \mathrm{MeOH}-\mathrm{MeOD}$ (2-, 3 -, and $4-\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}, 56,1.1$, and 26 , respectively, 2 -, 3 -, and $4-\mathrm{QnCH}_{2}-$ SiMe $_{3}$, ca 5,11 , and 32 , respectively) have also been measured The rate isotope effects for $2-\mathrm{Py}$ - and $2-\mathrm{Qn}-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ are significantly higher than is usual for cleavages of this type Except for $2-\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$, the product isotope effects are rather smaller than those given by $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ compounds of comparable reactivities.

[^0]Intioduction
A recent joint paper from tuo of the laboratonies named above descnbed a study of the cleavage of some picoly l- and (qumolylmethyl)-timethy lsilanes (denoted below by $\mathrm{Py}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ and $\mathrm{QnCH}_{2} \mathrm{Sill}_{3}$) by base in an aqueous meth anolic medium contaming a rather large piopoition of the organosilane [1] (Since the methanol and aqueous-alkal, were present in $9 / 1 \mathrm{v} / \mathrm{v}$ ratio, the medium is referred to loosely below as " 90 "," MeOII) This unusual medium uas employed because the changes in the UV spectrum accompanying cleavage were not in all cases sufficiently large to permit use of the usual spectrophotometric measurement of rates $[2,3]$, and so a GLC method of analysis was adopted, and this required the presence of a substantial amount ($\mathrm{ca} 4 \mathrm{vol}^{r} \mathrm{c}$) of the organosilane and of an internal stanclard (ca 1 vol\%) This reduced the accuracy of the rate measurements, and, more important, hindered companisons with prevously studied cleavages of other RSill_{3} compounds, but neveltheless the results were used to derive apprommate values of σ ol σ^{-}constants for the PyCH_{2} and QnCH_{2} systems and of $\mathrm{p} K_{\mathrm{d}}$ vaues for the related carbon acids PyCH_{3} and QnCH_{3} [1] By employing spectrophotometers which enable even small UV changes to be monitored with accuracy, we have been able to measure the rates for the cleavages of these organosilanes in media previously used for a wide range of RSiMe_{3} compounds, viz $100 \% \mathrm{MeOH}[3-5]$ and $2 / 1$ $\mathrm{v} / \mathrm{v} \mathrm{MeOH}$ (described below as $67 \% \mathrm{MeOH}$) [2,6] The deuterium solvent isotope effects have also been determmed for the reaction in 100% methanol

Results and discussion

The experimental results are shown in Tables 1 and 2. (Data for cleavage of $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ are included in Table 1 for comparison) Listed are the observed second-order specific rate constants, k_{s} (the observed pseudo-first order constant divided by the concentration of base), the rate isotope effects $R I E$ [the ratio, $k_{s}(\mathrm{MeOH}) / k_{\mathrm{s}}(\mathrm{MeOD})$, of the rate constants in MeOH and MeOD , respectively], and the solvent isotope effects, $P I E$ (the product ratio RH/RD obtained on cleavage of RSIMe_{3} in $1 / 1 \mathrm{MeOH} / \mathrm{MeOD}$ containing NaOMe). In systems such as these the PIE values are thought to represent the kinetic isotope effects for reactions of the carbanıons R^{-}with methanol [3]

Implications of rate constants

The main features of the data are as follows (a) The values of $\log k_{\mathrm{s}}$ (100% MeOH) determined in $100 \% \mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ show an excellent correlation with the corresponding values of $\log k_{\mathrm{s}}(67 \% \mathrm{MeOH})$ determined in $67 \% \mathrm{MeOH}$ at $50^{\circ} \mathrm{C}$ (correlation coefficient, 0.999 ; slope, 120); the correlation is only slightly poorer when the data for $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ are included (correlation coefficient, 0.998 ; slope, 1.17). There is a less satisfactory correlation between $\log k_{\mathrm{s}}(100 \% \mathrm{MeOH})$ and $\log k_{\mathrm{s}}$ (' 90% " MeOH) (correlation coefflcient, 0.996 ; slope 1.21), but this is attributable to an abnormal value for $2-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$ in the " 90% " MeOH In the latter medium the reported k_{s} value for this compound was slightly larger than that for its 4 -isomer [1], whereas in 100% and $67 \% \mathrm{MeOH}$ we find that the 4 - is more than twice as reactive as
[1BIII
SPFCIFIC SFCOVDORDER R ITE CO\STAVIS IS FOR CLEII IGE OF RSIME3 COMPOUNDS BY
 IHE R ITE iSOTOPE EFRECT

12	$\begin{aligned} & i a \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & 10^{3} \text { [aomul }{ }^{b} \\ & (1) \end{aligned}$	Solvent	Temperature $\text { (} \mathrm{C})$	$\begin{aligned} & 10^{5} \mathrm{hs}^{-1} \\ & \left(1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$	RIT
$2-\mathrm{PVCH}_{2}$	275	207	Me OH	25	83	065
		205	HLOD		128	
		170	67c MeOH	50	8.0	
$3-\mathrm{PLCH}_{2}$	278	$5 \geq 0$	MLOH	25	116	049
		520	VILOD		235	
		520	67 cm MeOH	50	237	
$4-\mathrm{P}_{2} \mathrm{CH}_{2}$	262	210	VICOH	23	1420	054
		210	MEOD		2610	
		170	$67 \% \mathrm{VEOH}$	50	12000	
SanCH_{2}	322	200	31\%OH	2う	4040	056
		200	HeOD		7200	
	323	170	$67^{\circ} \mathrm{CO} \mathrm{MeOH}$	50	21700	
$3-\mathrm{QnCH}_{2}$	327	520	VICOH	25	81	047
		530	veod		171	
	326	520	$67^{\circ} \mathrm{VHEOH}$	50	107	
$4-\mathrm{QnCH}_{2}$	295	200	Veor	25	9500	052
		200	vicon		18100	
	293	520	$67 \% \mathrm{HCOH}$	50	45000	
$\mathrm{pO}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$		100	WeOH	25		$050{ }^{c}$
		100	MeOD		$23000{ }^{\text {c }}$	
		520	67\% VIeOH	50	90000	

 throughout although OH^{-}will also be present in 67° teOH c Data from ref 3
the 2-isomer We believe that the value of k_{5} reported for the 2-QnCH $\mathrm{CiMe}_{3} \mathrm{~m}$ " 90% " MeOH was m error If the point for this compound is omitted there is an almost perfect correlation between the values of $\log k_{\mathrm{s}}(100 \% \mathrm{MeOH})$ and those of $\log k_{s}$ (" 90% " MeOH) (correlation coefficient, 1000 , slope, 127) Furthermore, the new $\log k_{\mathrm{s}}$ values conelate even more satisfactorily than the earher values with the values of log h for hydrogen exchange in $\mathrm{MeOH} / \mathrm{MeONa}$

TABLE 2
PRODLCT ISOTOPE EFFECTS IN CLEAVAGES OF PsCH $\mathrm{CS}_{2} \mathrm{SI}_{3}$ AVD QnCH ASMME_{3} COMPOUNDS RSIME3 BY SODIU\I METHOXIDE IN METHANOL AT $25^{\circ} \mathrm{C}$

R	$\begin{aligned} & \text { MeOH/ } \\ & \text { MeOD } \end{aligned}$	$\begin{aligned} & \text { [NaOMe] } \\ & \text { (II) } \end{aligned}$	Time (h)	RH/RD		PIE		
				BV NMR ${ }^{6}$	By MPD ${ }^{\text {b }}$	Bv NMR	By MPD	Mean
$2-\mathrm{PyCH}_{2}$	1/4	0025	48	132	145	53	58	56
$3-\mathrm{PyCH}_{2}$	1/2	05	48		057		11	11
$4-\mathrm{Py} \mathrm{CH}_{2}$	1/4	0025	24	070	057	28	23	26
2-9nCH2	1/4	0025	24	110	$(<20)^{6}$	44	$(<8)^{6}$	$\sim 5^{\text {b }}$
$3-\mathrm{QnCH}_{2}$	$1 / 1$	015	48	120	100	12	10	11
$4-\mathrm{QnCH}_{2}$	1/4	0025	24	085	073	34	29	32

[^1]at $135^{\circ} \mathrm{C}$ [7] and EtOH/EtOK at $25^{\circ} \mathrm{C}[8]$, for the log $k,\left(100^{\circ} \mathrm{c}\right.$, MeOIf) and $\log k$ (EtOH/EtOK) values the correlation coefficient is 0999 Moreover, the sequence of reactivities in corresponding stiuctures now agees fully with that in the deuteration in $\mathrm{EtOH} / \mathrm{EtOK}$ the previously repoited $\log k_{\mathrm{s}}$ (" 90% " MeOH) values indicated that $2-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$ w as more reactive than $4-\mathrm{QnCH} \mathrm{C}_{2}-$ SiMe_{3} in the cleavage, whereas $4-\mathrm{QnCH}_{3}$ is more reactive than $2-\mathrm{QnCH}_{3}$ in hydrogen-exchange [8]
(b) The new data can be used in conjunction with those for $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}{ }^{-}$ SiMe ${ }_{3}$ to delive σ^{-}constants for the PyCH_{2} and $\mathrm{QnCH} \mathrm{CH}_{2}$ systems with more confidence than previously Based solely on the value of k_{s} for $p-\mathrm{O}_{2} \mathrm{~N}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ SiMe_{3} and $\mathrm{PhCH}_{2} \mathrm{SiMe}_{3}$ in $67 \% \mathrm{MeOH}$ at $50^{\circ} \mathrm{C}^{\circ}$, the value of ρ is 506 , a value of 124 being used for the σ^{-}constant for the $p-\mathrm{NO}_{2}$ group \cdots. Use of this p value gives the σ^{-}constants for the PyCH_{2} and QnCH_{2} systems shown m Table 3. (For $3-\mathrm{PyCH}_{2}$ and $3-\mathrm{QnCH}_{2}$ these constants are presumably identical with the σ constants.) A similar procedure, involving use of a ρ value of 573 , gives values of the σ constants delived from the rates in $100 \% \mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$, and these are also shown in Table 3 , in this case the experimental value ($0885 \times 10^{-8} 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$) obtained by extrapolation from data at higher temperatures [3]) of k_{s} for cleavage of $\mathrm{PhCH}_{2} \mathrm{SiMe}_{3}$ with 20 M NaOMe has to be halved to make an approximate correction for the dependence of k_{s} on the base concentration in this medium [13]. The mean values of the σ^{-}constants listed in Table 3 are thought to be fairly reliable, except for the $2-\mathrm{Qn} \mathrm{CH}_{2}$ system they differ only slightly from those previously derived, by making several approximations, from the data in " 90% " MeOH [1] It should be appreciated that these σ^{-}values are ali related to the value of 1.24 used for the $p-\mathrm{NO}_{2}$ group, and if in a future correlation a different value is used for the latter, the values for the PyCH_{2} and QnCH_{2} systems should be appropriately amended.

The previous discussion [1] of the comparison of the derived σ^{-}constants with those suggested by other workers [10] need not be significantly modified in the light of the new results
(c) Using the k_{s} values for $67 \% \mathrm{MeOH}$, values rather more accurate than those previously derived [1], but necessarily still rough, can be deduced for the $\mathrm{p} K_{\mathrm{a}}$'s of the carbon acids PyCH_{3} and QnCH_{3} by use of the relationshıp $\mathrm{p} K_{a}=-$ $2.86 \log k_{\text {rel }}+41$ which applies in this medium [11], where $k_{\text {rel }}$ is the rate of cleavage of the RSiMe_{3} compound relative to that of $\mathrm{PhCH}_{2} \mathrm{SiMe}_{3}$ and the $\mathrm{p} K_{\mathrm{a}}$ refers to the equilibrium ion-pair acidity of the corresponding carbon acid RH in $\mathrm{CsNHC}_{6} \mathrm{H}_{11} \mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{11}$, based on a $\mathrm{p} K_{\mathrm{a}}$ of 186 for 9-phenylfluorene [12] $\times \times \ldots$ For references to other derivations of pK_{a} values for the PyCH_{3} and QnCH_{3} compounds see ref. 1.

Solvent isotope effects

For cleavage of a wide variety of RSiMe_{3} compounds ($\mathrm{R}=\mathrm{Ar}$ or ArCH_{2}), the

[^2]reble 3
 C IRBOV $\operatorname{CCIDSRF}$

\boldsymbol{R}		$\mathrm{O}^{-}(67 \mathrm{~cm} \mathrm{HeOH})^{\circ}$	VLan σ^{-}	$\mathrm{p} K_{\mathrm{d}}$
$2-\mathrm{PVCH}_{2}$	087	084	085	295
$3-\mathrm{PrCH}_{2}$	Oう!	053	053	335
$4-\mathrm{P}_{4} \mathrm{CH}_{2}$	108	107	107	26
$2 \mathrm{QnCH}_{2}$	116	112	114	255
$3-\mathrm{QrCH}_{2}$	069	070	070	315
4-8nCH2	123	118	120	245

a 111 witus are relited to the walue of 121 for the $n-\mathrm{O}_{2}$ group $\mathrm{For} 3-\mathrm{P}_{2} \mathrm{CH}_{2}$ and $3-\mathrm{QnCH}_{2}$ the σ^{-}const ints art probably identical uith the r constants
$R I E$ values fall in the range $042-050[3-5]$, and such values are consistent with the proposed mechanism in which R^{-}separates in the rate-determining step, and the anion MeO^{-}is fully or almost fully attached to silicon in the transition state, with complete or almost complete hberation of the methanol mitially solvating the anıon [2.5] RIE values significantly lauger than 050 were noted in three cases, however, viz 057 for cleavage of 9 -fluorenylSiMe ${ }_{3}$ [5], 070 for 9 -fluorenylSi-l- Pl_{3}, and 071 for $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiPh}_{3}$ [14] The RIE values for the least reactive $\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$ and $\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$ compounds, the 3 -isomers, are below 050 , while those for 4 -isomers, 0.54 and 052 , may not be significantly above this value, but the value for $2-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$, viz 056 , is definitely high, while that for $2-\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$, viz 065 , is markedly so it is probably significant that $R I E$ values significantly above 050 observed up to now are associated with highly reactive compounds, although high reactivity does not usually imply high RIE values [3] Theie is not yet sufficient information to justify a lengthy discussion of the implications of high RIE values, but we note that the simplest explanation would be that the methoxide ion is significantly less than fully attached to the silicon atom in the transition state of the rate-determining step, if this were the correct explanation it would imply that a 5-coordinate silicon intermediate of the type [MeOSıRMe $]^{-}$is not formed before the sate-determining step, and thus that the mechanism must be of the B_{s} rather than the B type [3] It would then be plausible that this effect might show up only in the move reactive systems, since in a concerted formation of the $\mathrm{MeO}-\mathrm{Si}$ and breaking of the $\mathrm{Si}-\mathrm{R}$ bond, the degree of separation of the anion R^{-}, and thus the degree of attachment of the MeO^{-}, should be smaller the better the leaving group ability of R (i e the greater the stability of the anion R^{-}) But if high $R I E$ values are indeed associated with high reactivities in this way, we cannot at present suggest any reason why they appear in only some of the reactive systems, and why with the $\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$ and $\mathrm{QnCH}_{2^{-}}$ SiMe_{3} compounds the very high $R I E$ values are associated with the 2-isomers, which are less reactive than the corresponding 4-isomers *

[^3]We could look to special seconday solvent sotope effects for explanation of the high $R I E$ values fon the $\mathrm{Py} \mathrm{CH}_{2} \mathrm{Sidie}_{3}$ and $\mathrm{CenCH}_{2} \mathrm{SiNe}_{3}$ compounds Thus hy diogen-bondmg to the mitrogen atom of these compounds must have a substantial influence on electronic effects in these sistems, and more effectice hy-diogen-bonding in MeOII than in MeOD could lead to geater stabilication of the separating calbanion, but even if this effect whe large enough to influence the $R I C$ values it would be difficult to explain why it should be especially marked for the 2 -derivatives

Tumng to the PIL values, we finst note that the value for $2-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$ is only approximate, for reasons which are explamed m the Expenmental section There is little doubt, however, that the PIL for this compound is higher than that for the $4-\mathrm{Py}$ - and $4-\mathrm{Qn}-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ compounds, and it is probably comparable to that for $2-\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$. The patten of valation in PIL values with k_{s} values for $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{7}$ and $9-\mathrm{X}$-fluoren-9-ylSiMe ${ }_{3}$ compounds $[35$] had led us to e vpect that the PIE values for the range of $\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$ and $\mathrm{QnCH}_{2}-$ SiMe_{3} compounds, might. in view of the relevant k_{3} values, span the range 1-10, (cf Table 4), but this is not the case. As expected, the least reactive compounds, $3-\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$ and $3-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$, give $P I E$ values close to unity, while their more reactive isomers give substantially highei values, however, the only really high values, 58 and ca. 5 are given by the 2-isomers, each of which is less reactive than its 4 -1somer Except for $2-\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}$ the PIE values are markedly smaller than those for $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ compounds of comparable reactivities It is clear that the parallei between $P I E$ values and reactivity is far from exact, and that any relationship between $P I E$ and k_{s} values cannot be carried ovel quantitatively from one type of RSiMe_{3} compound to another

Since the RIE and PIE values for 2-Py- and $2-\mathrm{Qn}-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ both seem abnormally high compared with those of the other isomers, it is conceivable that a different mechanism, associated with the proximity of the N atom and the SiMe_{3} group, operates in the case of the 2-derivatives The fact that the points for the $2-\mathrm{PyCH}_{2}$ and $2-\mathrm{QnCH}=\mathrm{Cl}_{2}$ systems fall exactly on the excellent linear plot of $\log k_{\mathrm{s}}$ for the cleavages against $\log k_{\mathrm{s}}$ for the cleavages against $\log k$ for deuteriation in EtOD/EtOK argues against this possibility

TABLE 4
VALUES OF THE SPECIFIC RATE CONSTANTS ε_{S} AND PRODUCT ISOTOPE EFFECTS, PIE, FOR CLEAVAGE OF RSIME 3 COMPOUNDS BY SODIUM METHOXIDE IN 100° METHAVOL AT $25^{\circ} \mathrm{C}$

R	$\begin{aligned} & 10^{5} \mathrm{~h}_{\mathrm{s}} \\ & \left(1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$	PIE	R	$\begin{aligned} & 10^{5} h_{\mathrm{s}} \\ & \left(1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$	PIE
$\mathrm{m}-\mathrm{NCCC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	17	12	3-PyCH2	12	11
$m-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	32	13	3-QnCH2	81	11
$p-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	315	20	2-PyCH2	83	56
$p-\mathrm{PhO}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	470	29	$4-\mathrm{PyCH}_{2}$	1420	26
p-PhCOC66 ${ }_{4} \mathrm{CH}_{2}$	640	7	2-QnCH2	4040	ca 5
$o-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	2340	10	$4-\mathrm{QnCH}_{2}$	9500	32
$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	11500	10			

Expermental

Preparation of $\mathrm{n}_{2}, \mathrm{H}_{2} \mathrm{Sl}^{\mathrm{Me}} \mathrm{M}_{3}$ and $\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$ compounds

These compounds uere prepared as described previously [1], and purified by distillation through a Perkin-Elmer Model 151 spinning band fractionating column The $3-\mathrm{QnCH}_{2} \mathrm{SiNe}_{3}$ was fur ther purified by column chromatography (silica gel, 10% etheripentane) [1]

Rate measurements

Rates were measured spectiophotometncally [2,3-6], usually with a Hitach_-Perkin-Elmer Model 323 UV Spectıometer The wave length used in each case is shown in Table 1

The $67 \% \mathrm{MeOH}$ was prepared by mixing 2 vol of MeOII with 1 voi of aqueous alkall at ca $22^{\circ} \mathrm{C}$

PIE measurements
Product $\mathrm{RH} / \mathrm{RD}$ ratios were determined in two ways The first involved the use of the Apphed Chromatography Systems Organic Analyzer MPD 850 linked to a Pye Model 64 Gas Chromatograph [3-6] a $5 \mathrm{~m} \times 6 \mathrm{~mm}$ column of 5% Carbowax 20 M (for picolines) or 5% OV 17 (for quinolines) on Chiomosolb G at $180^{\circ} \mathrm{C}$ was used; the $\mathrm{RH} / \mathrm{RD}$ ratios obtained fiom cleavage in $100 \% \mathrm{MeOH}$ containing MeONa were satisfactorlly close to the theoretical values ($2-\mathrm{PyCH}_{2}$ $\mathrm{SiMe}_{3}, 609$ (calcd 60), 3- $\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}, 598,4-\mathrm{PyCH}_{2} \mathrm{SiMe}_{3}, 601,3-\mathrm{QnCH}_{2-}$ SiMe $_{3}, 791$ (calc. 80), $4-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}, 796$), except for $2-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$ For this compound a ratio of 84 was obtaned, compared with the calculated 80 , and thus the apparent $\mathrm{RH} / \mathrm{RD}$ ratio of 20 obtaned on cleavage in $1 / 4 \mathrm{MeOH} /$ MeOD (corresponding to a PIE value of 80) is likely to be substantially too high However, it seems unhkely that the true PIE is quite as low as the 44 indicated by the NMR method, and so we have used an estimated PIE value of 5 for this compound

The second method of determining PIE values involved cleavages in $\mathrm{CD}_{3} \mathrm{OH}$ / $\mathrm{CD}_{3} \mathrm{OD}$ mixtures and integration on the Vanan XL100 spectrometer of the ${ }^{1} \mathrm{H}$ NMR resonance from the methyl protons of the $\mathrm{ArCH}_{3} / \mathrm{ArCH}_{2} \mathrm{D}$ product solutions, with use of the integrated signais from the aromatic protons for calibration Several determinations were made with each compound and the mean value is reported in Table 2 It will be seen from Table 2 that, except for the special case of $2-\mathrm{QnCH}_{2} \mathrm{SiMe}_{3}$. the $\mathrm{RH} / \mathrm{RD}$ ratios obta.ned in this way agreed within 20% with those from the first method

These analytical methods were also used to cc^{5} sirm that no deuteriation of the parent PyCH_{3} and QnCH_{3} compounds occ'jred in MeOD under the cleavage conditions used for dete -minations of $P^{r_{i}}$, values

Acknowledgements

C E acknowledges the receipt of grants from the Science Research Councll and the Royal Society. We thank Mr C Simpson, of the University of Sussex, for determining the RD/RD ratios on the MPD Organic analyzer

Eeferences

1 (Fischer M X Vorgan and C Eaborn J Organometal Chem 136 (1977) 323
2 C Eaborn and $S H$ Parker J Chem Soc (1955) 125
3 D Vaccanteli G Sec mi and C Eaborn J Chem Soc Perhin II (1978) 834
\& C Eaborn and G Suconi J Chem Soc Perkin II (1976) 925
5 C Eaborn D R M Walton and G Stcont I Chem Soc Perkin II (1976) 1857
6 R W Bott C Faborn and B M Rushton J Ortanometal Chem 3 (1965) 4.48 C Edborn K L Sinnatambe and DK M Waton I Chem Soc Perhin II (1975) 380
7 U V White and D Lazdins J Org Chem 34 (1969) 2756
8 ㄱ Zatsepina $1 V$ Kiroxa and IF Tupitsun Reahts Sposobnost Orb Soedin 5 (1968) 70
9 M Luters and J Wher J Chem Soc (1963) 3486

11 C Eaborn DR M Walton and G Seconı J Chem Soc Chem Commun (1975) 937
12 A Streituiestr Jr IR Murdoch G Hafelinger and CJ Chang 3 Amar Chem Soc 97 (1975) 190 $95(1973) 4948$ A Streituseser $\operatorname{Ir} \mathrm{F}$ Ciuffarinand I H Hammons ihid 89 (1967) 63 (Streitwieser Jr. M K Granger F Mares and R A Wolf ibld 95 (1973) 4257
13 C Laborn and G Secon J Chem Soc Perhm II (1979) 203
14 G Secorn, Unpublished results

[^0]: * Dedicated to Professor H Normant on the occasion of the 72 nd burthday on June 25th 1979

[^1]: ${ }^{a}$ For determinations of $\mathrm{RH} / \mathrm{RD}$ ratios by NMR $\mathrm{CD}_{3} \mathrm{OH} / \mathrm{CD}_{3} \mathrm{OD}$ maxtures were used b See Expenmental section

[^2]: * Actually the rate constant for the latter compound refers to cleavage in $39 \mathrm{wt} \mathrm{\%} \mathrm{H}_{2} \mathrm{O}$ in MeOH [2] which is closer to 66 than 67 volo MeOH but such a change in medium has a negligible effect on the rate
 ** For a larger range of compounds in this medium and using a value of 127 for the $p-\mathrm{NO}_{2}$ group a slope of 488 was denved [2].
 *** The relationship mas possibly give systematically low values in the p_{a} region 27-32 [13]

[^3]: * Because in the few cases for which data are avalable RIE values seem to increase on increasing the size of the R^{\prime} groups in $\mathrm{RSiR}^{\prime}{ }_{3}$ compounds we suspect that higher RIE values mav in some casps at least be associated with mereased steric hindrance

